
Olgierd Unold
Agnieszka Kaczmarek

Łukasz Culer

Iterative method of
generating artificial

context-free grammars

2

1. Motivation
2. Proposed solution
3. Grammar generator
4. Grammar Complexity Index
5. Positive test set generator
6. Negative test set generator
7. Live presentation

Agenda

3

1. Grammar-based Classifier System (GCS) -
Empirical Grammatical Inference

2. Learning and testing sets - crucial part of every
system
a. Testing performance
b. Developing improvements

Motivation

4

1. Artificial sets (known structure)
a. L1, L2, A

n
B

n
…

b. Limited number, need of manual crafting
2. Real-life sets

a. Amyloid database
b. Described by unknown grammar of unknown

complexity - which could not even exist
c. Unrepresentative test set

Motivation

Available learning sets

5

- low complexity of sets (for simple sets full
performance was obtained anyway)
- high complexity of sets (method was unable to
learn grammar regardless of new
features)
- a lack of specific features of grammar needed to
test problematic issues

- smooth complexity incrementation - rarely
possible (allow to notice subtle changes in
performance)

Motivation

Learning issues

6

Requirements:

- automatic procedure
- creation of consistent, context-free grammars of a

given complexity
- positive and negative learning sets

Proposed solution

7

We consider grammar consistent when all the
rules and symbols contained by the examined
grammar are achievable and productive.

Creating a consistent grammar is the goal of
our generation process.

Proposed solution

Grammar consistency

8

1. Context-free grammars
2. Rule forms:

a. Parenthesis rules
ー A→aBb
ー A→ab

b. Branch rules
ー A→CD

c. Iteration rules
ー A→cE
ー A→Ec

SAKAKIBARA, Yasubumi; KONDO, Mitsuhiro. GA-based learning of context-free grammars
using tabular representations. In: ICML. 1999. p. 354-360

Proposed solution

Assumptions

9

Proposed solution

Algorithm flow

10

1. Number of parenthesis rules with non-terminal
symbol

2. Number of parenthesis rules without
non-terminal symbol

3. Number of branch rules
4. Number of iterative rules
5. Maximum number of terminal symbols
6. Maximum number of non-terminal symbols

Proposed solution

Parameters

11

1. Rules and symbols are added iteratively during
generation until the conditions are met

2. Rules are added according to given principles

Grammar generator

12

1. At first, all terminal rules are added - in that case
parenthesis rules with no non-terminal symbols

2. Then - all remaining rules randomly
3. Rules are connected only to productive symbols

(only productive symbols have to be on the right
side of the rule)

4. Rules can be added using the existing
non-terminal symbols on their left side or by
creating a new one

Grammar Generator

Adding principles

13

5. By creating a new non-terminal symbol on the left
side, one of the non-terminal symbols from the
right side must be a recently added non-terminal
symbol

6. During the creation process number of rules that
are left to add should be not lower than the
number of remaining unconnected non-terminals

7. After completing the adding process, one of the
symbols that would make all other symbols
achievable, is converted into a start symbol

Grammar Generator

Adding principles

14

1. The Grammar Complexity Index (GCI) is a simple
indicator of grammar complexity.
It is a sum of all rules that describes a given
grammar.

2. A grammar that is described by the rule set P =
{A⟶AB, B⟶a, A⟶b} has a GCI value of 3.

3. The introduction of GCI was justified by the need
to group generated grammars.

Grammar Complexity Index

15

GCI - 5

Parenthesis rules without non-terminal symbol - 2
Parenthesis rules with non-terminal symbol - 0
Branch rules - 1
Iterative rules - 2

Maximal number of terminal symbols - 3
Maximal number of non-terminal symbols - 4

Grammar Generator

Example

16

Grammar Generator

Example

S R

A A→ab

a

b

a

b

A

17

Grammar Generator

Example

S R

A A→ab

B B→bc

a

b

c

a

b

A

c
B

18

Grammar Generator

Example

S R

A A→ab

B B→bc

C C→AA

a

b

c

a

b

C

c
B

A

19

Grammar Generator

Example

S R

A A→ab

B B→bc

C C→AA

a A→Cc

b

c

a

b

C

c
B

A

20

Grammar Generator

Example

S R

A A→ab

B B→bc

C C→AA

a A→Cc

b C→Bc

c

a

b

C

c
B

A

21

Grammar Generator

Example

S R

A A→ab

B B→bc

$ C→AA

a A→Cc

b C→Bc

c

a

b

$

c
B

A

22

Grammar Generator

Example

23

S
T

- maximum number of terminal symbols, ∈ ℕ
+

S
NT

 - maximum number of non-terminal symbols, ∈ ℕ
+

R+
P
 - parenthesis rules with a non-terminal symbol, ∈ ℕ

0
R-

P
 - parenthesis rules without a non-terminal symbol, ∈ ℕ

+
R

I
- required number of iterative rules, ∈ ℕ

0
R

B
 - required number of branch rules, ∈ ℕ

0

Grammar Generator

Theoretical analysis

24

Grammar Complexity Index

Theoretical analysis

25

1. Generation of all examples - potentially
impossible (infinite number?)

2. Expression of the grammar structure with the
lowest number of examples

3. Optimal set generation described in [2]
(Maximum number of examples - 2|R|3)

Positive test set

[2] MAYER, Mikaël; HAMZA, Jad. Optimal Test Sets for Context-Free Languages. arXiv preprint arXiv:1611.06703, 2016.

26

1. Input - any context-free grammar
2. Conversion to linear grammar
3. Graph generation
4. Test set generation based on the graph
5. Output - test set

Positive test set

27

Positive test set

#1#3#4

$ → #1 → #3 → #4 → Γ

$
A

B

C

D

E

Γ

#1: $→aAb

#2: A→caBc

#3: B→daC
#4: C→dfaDa

#9: A→Dbd

#6: B→abcd

#7: B→dEa

#8 E→ab

#9: $→ba

#5: D→Bbd

acaddfaabcdbdacb

28

1. Conversion to Chomsky Normal Form
2. Generation of a random terminal symbol string

with a length from the given interval
3. CYK verification
4. Parsed - dismiss string
5. Not parsed - add to negative test set
6. Repeat until the desired number of strings

obtained

Negative test set

29

http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php

Live presentation

http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php

