Iterative method of
generating artificial
context-free grammars

Olgierd Unold
Agnieszka Kaczmarek
Y.ukasz Culer

Agenda

Motivation

Proposed solution
Grammar generator
Grammar Complexity Index
Positive test set generator
Negative test set generator
Live presentation

L boa i G S

Motivation

1. Grammar-based Classifier System (GCS) -
Empirical Grammatical Inference

2. Learning and testing sets - crucial part of every
system
a. Testing performance
b. Developing improvements

Motivation

Available learning sets

1. Artificial sets (known structure)
a. L1,12,AB ...
b. Limited number, need of manual crafting
2. Real-life sets
a. Amyloid database
b. Described by unknown grammar of unknown

complexity - which could not even exist
c. Unrepresentative test set

Motivation

Learning issues

- low complexity of sets (for simple sets full
performance was obtained anyway)

- high complexity of sets (method was unable to
learn grammar regardless of new

features)
- a lack of specific features of grammar needed to

test problematic issues

- smooth complexity incrementation - rarely
possible (allow to notice subtle changes in
performance)

Proposed solution

Requirements:

- automatic procedure

- creation of consistent, context-free grammars of a
given complexity

- positive and negative learning sets

@

roclaw
e

Proposed solution

and Technology

Grammar consistency

We consider grammar consistent when all the
rules and symbols contained by the examined
grammar are achievable and productive.

Creating a consistent grammar is the goal of
our generation process.

Proposed solution

Assumptions

1. Context-free grammars
2. Rule forms:
a. Parenthesis rules
— A—aBb
— A—ab
b. Branch rules
— A—CD
c. lteration rules
— A—cE

— A—Ec

SAKAKIBARA, Yasubumi; KONDO, Mitsuhiro. GA-based learning of context-free grammars
using tabular representations. In: ICML. 1999. p. 354-360

Proposed solution

L

By

Algorithm flow

| o . L B R (S e e . e e
Grammar /

CNF Grammar Positive Set Negative Set
Converter Generator Generator

r TN NN NN (NEE OGNNSO GEEE SN BEEE IS SR B G B SIS S S R TR G SR GRS T e e . NS AN - -
| Output I
A 4 l
| Generated CNF Generated Positive Set Negative Set |
: grammar grammar [
[

e o o e o e o o o e s S S S e S SEE GEE SEE SEE MEE S S S SEE S S S e S

Proposed solution

Parameters

Number of parenthesis rules with non-terminal
symbol

Number of parenthesis rules without
non-terminal symbol

Number of branch rules

Number of iterative rules

Maximum number of terminal symbols
Maximum number of hon-terminal symbols

Grammar generator

1. Rules and symbols are added iteratively during
generation until the conditions are met
2. Rules are added according to given principles

Grammar Generator

e
and Technology

Adding principles

. At first, all terminal rules are added - in that case
parenthesis rules with no non-terminal symbols

. Then - all remaining rules randomly

Rules are connected only to productive symbols

(only productive symbols have to be on the right
side of the rule)

. Rules can be added using the existing

non-terminal symbols on their left side or by
creating a new one

Grammar Generator
Adding principles

5. By creating a new non-terminal symbol on the left
side, one of the non-terminal symbols from the
right side must be a recently added non-terminal
symbol

6. During the creation process number of rules that
are left to add should be not lower than the
number of remaining unconnected non-terminals

7. After completing the adding process, one of the
symbols that would make all other symbols
achievable, is converted into a start symbol

Grammar Complexity Index

1. The Grammar Complexity Index (GCl) is a simple
indicator of grammar complexity.
It is a sum of all rules that describes a given
grammar.

2. A grammar that is described by the rule set P =
{A—AB, B—a, A—b} has a GCl value of 3.

3. The introduction of GCI was justified by the need
to group generated grammars.

Grammar Generator

Wroclaw

University

of Sciance
and Technology

Example

GCI-5

Parenthesis rules without non-terminal symbol - 2
Parenthesis rules with non-terminal symbol - 0
Branch rules - 1

Iterative rules - 2

Maximal number of terminal symbols - 3
Maximal number of non-terminal symbols - 4

@l Grammar Generator

Example

A—ab

o o0 > W»

@j Grammar Generator

Example
S | R

A |A—ab
B |B—bc
d

b

C

E@ Grammar Generator

Wroclaw
University
of Science

Example

O T 9 O ™ > uv
(@)
!
>
>

E@ Grammar Generator

Wroclaw
University
of Science

Example

O T O O @ > Wwm
O
!
P
-

E@ Grammar Generator

Wroclaw
University
of Science

Example

O T 9 O W >0 O”m
L
o
@)

Grammar Generator

Example

O T O WV W >N WL
[
o
(@)

@l Grammar Generator

Example

Step 1 Step2 Step 3 Step 4 Step 5 Step 6
R S R S R S R S R S R
A A—ab A A—ab A A—ab A A—ab A A—ab A A—ab
B B B—bc B B—bc B B—bhc B B—hc B B—bc
b a C C—AA & C—AA C C—AA) C—AA
b a a A—Cc a A—Cc a A—Cc
c b b b C—Bc b C—Bc
c c © c

@ Grammar Generator

Theoretical analysis

S_- maximum number of terminal symbols, € N,

S, - maximum number of non-terminal symbols, € N,

R, - parenthesis rules with a non-terminal symbol, € N,
R", - parenthesis rules without a non-terminal symbol, € N,
R, - required number of iterative rules, € N,

R, - required number of branch rules, € [N]O
4

= < ONT

< |Rp| + |Ri| + 2|RB| +1

'*ilv

Syr. S, [R5 € N
wher 6{ b ke ‘ s
ol

@ Grammar Complexity Index

Theoretical analysis

Ryl
2|R5 e
<\/R‘;+|R1+2|RB+1 S

T

< ST

Snt < |Rp| + |Rp| + |Ry| + |Rp| for |Rp| > |Rp| —1
Syt < ’R ‘—I—’R[‘—F‘ZRB‘—Fl for ‘RB|<‘R ‘—l

Positive test set

1. Generation of all examples - potentially
impossible (infinite number?)

2. Expression of the grammar structure with the
lowest number of examples

3. Optimal set generation described in [2]
(Maximum number of examples - 2|R|?3)

[2] MAYER, Mikaél; HAMZA, Jad. Optimal Test Sets for Context-Free Languages. arXiv preprint arXiv:1611.06703, 2016.

Positive test set

Input - any context-free grammar
Conversion to linear grammar

Graph generation

Test set generation based on the graph
Output - test set

il b A

Positive test set

H1#3#4
S—>#l >#3 ->#H4 T

#1: $—>a,6£’@ #9: A—Dbd

#2: A—caBc

: H6: B bcd
#9: S—ba —abc #4: C—dfaDa

acaddfaabcdbdach

Negative test set

-

Conversion to Chomsky Normal Form
Generation of a random terminal symbol string
with a length from the given interval

CYK verification

Parsed - dismiss string

Not parsed - add to negative test set

Repeat until the desired number of strings
obtained

i

o e W

Live presentation

http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php

http://lukasz.culer.staff.iiar.pwr.edu.pl/gencreator.php

